

SDI-12 RAIN GAUGE Converter

The TBSRGC1 is a 2 x 1.5V AA alkaline battery powered converter to equip tipping bucket rain gauges with data logging capability and SDI-12 interface.

The TBSRGC1 has been designed to work with any type of tipping bucket rain gauge with switch output. The TBSRGC1 has a real time clock, programmable via extended SDI-12 commands. It is easy to install and easy to configure. The TBSRGC1 is mounted in an IP67 housing from Fibox. Additional connectivity points enable distribution of SDI-12 cables to other sensors, if required. The converter is equipped with two PG grommets by default. It can be customized with additional grommets or equipped with IP67 connectors upon inquiry.

Features

- SDI-12 interface
- 2x AA battery powered
- Real time clock/calendar
- Data logging
- Ultra low power consumption
- IP67 housing FIBOX PC081206
- IP67 air pressure balance vent
- Size 80 x 120 x 57 mm

- Rugged design
- Simple installation
- Operating Temperature Range: -40°C - +85°C

Target Applications

- Meteorology
- Agricultural monitoring

Contents

1	INTRODUCTION	3
2	MEASUREMENT	3
3	PRODUCT SPECIFICATION	4
4	CONFIGURATION	4
5	INSTALLATION	4
6	SDI-12	5
7	APPLICATION EXAMPLES	6
8	SUPPORTED SDI-12 COMMANDS	7
9	SUPPORTED EXTENDED COMMANDS	8
10	TECHNICAL SPECIFICATIONS	8
11	CONNECTIONS	9
12	ENVIRONMENTAL SPECIFICATIONS	10
13	ORDERING INFORMATION	10
14	HISTORY	10

Tables

Table 1 – Standard SDI-12 commands supported by the TBSRGC1	7
Table 2 – Extended SDI-12 Commands	8
Table 3 – Technical Specifications	8
Table 4 - Environmental Specifications	10
Table 5 – Ordering Information	10
Table 6 – History	10

Figures

Figure 1 - TBSRGC1 sensor connected to TBS03 SDI-12 to USB converter; setup for controlling	/ testing
sensors and for PC based data recording	6
Figure 2 –TBSRGC1 sensors connected to Remote Telemetry Unit or Data Recorder	6
Figure 3 –connector assignment	9

1 Introduction

The TBSRGC1 is a SDI-12 converter for standard tipping bucket rain gauges. It has an on board real time clock/calendar to enable precipitation logging capability.

2 Measurement

The TBSRGC1 outputs precipitation volume

SDI-12 Measurement Commands:

aM! Read precipitation parameters

aMC! Read precipitation parameters – measurement with cyclic redundancy check

aC! Read precipitation parameters

aCC! Read precipitation parameters – measurement with cyclic redundancy check

Output format:

+A.AAA+ +B.BBB+C.CCC+D.DDD

where:

+A.AAA = accumulated rainfall since last measurement (inches or mm of rain)

+B.BBB = total rainfall accumulation today (inches or mm of rain)

+C.CCC = total rainfall accumulation yesterday (inches or mm of rain)

+D.DDD = total rainfall accumulation since reset. (Inches or mm of rain)

aM1! Read temperature

aMC1! Read temperature – measurement with cyclic redundancy check

aC1! Read temperature

aCC1! Read temperature – measurement with cyclic redundancy check

Note that the temperature measurement relates to chip temperature which however is close to the ambient temperature inside the housing, as due to the short measurement times, chip temperature increase can be neglected.

Extended SDI-12 Commands:

aXSD,YYYY,MM,DD! Set date
aXST,HH,MM,SS! Set time
aXGD! Query date
aXGT! Query time

aXCT,saa.aa! Temperature calibration

saa.aa: enter ambient temperature in °Celsius measured with a

reference thermometer; s is the sign

aXTUu! Set temperature unit

u = C for °Celsius or F for °Fahrenheit

aXGU! Query temperature unit

aXSBV, sn.nn! Set rain gauge bucket volume

n.nn is the equivalent rainfall in mm or inch, per bucket tip

aXGBV! Query rain gauge bucket volume

n.nn is the equivalent rainfall in mm or inch, per bucket tip

aXSO,snnnn.nn! Set start value/offset for the total accumulated rainfalls aX_ok<CR><LF> aXGO! Query start value/offset for the total accumulated rainfalls

a+nnnn.nn<CR><LF

aXRS! Reset total accumulated rainfall

Use this command to set the accumulated rainfall value to zero.

3 Product Specification

SDI-12 Interface

- Supply voltage for SDI-12 IF: 12V nominal; working range 6V16V. The SDI-12 voltage is used to power the SDI-12 data level shifter and only needs to be present during a SDI-12 measurement
- Supply voltage for rain gauge converter electronics: 2 x 1.5V AA alkaline battery cells
- Supply current: 4µA in sleep mode waiting for RG pulse; 8mA during SDI-12 measurement (1 sec)
- Operating temperature range: -40 ... +85°C
- Dimensions: 80 x 120 x 57 mm

4 Configuration

Use the extended SDI-12 command **aXSBV**, **sn.nn!** to set the rain gauge bucket volume n.nn is the equivalent rainfall in mm or inch, per bucket tip.

5 Installation

The TBSRGC1 is compatible with any data logger or remote telemetry unit with SDI-12 interface. Refer to the data logger or RTU manual and to chapter 2 of this datasheet.

6 SDI-12

SDI-12 is a standard for interfacing data recorders with microprocessor-based sensors. SDI-12 stands for serial/digital interface at 1200 baud. It can connect multiple sensors with a single data recorder on one cable. It supports up to 60 meter cable between a sensor and a data logger.

The SDI-12 standard is prepared by

SDI-12 Support Group (Technical Committee) 165 East 500 South River Heights, Utah 435-752-4200 435-752-1691 (FAX) http://www.sdi-12.org

The latest standard is version V1.3 which dates from July 18th, 2005. The standard is available on the website of the SDI-12 Support Group.

7 Application Examples

Figure 1 – TBSRGC1 sensor connected to TBS03 SDI-12 to USB converter; setup for controlling / testing sensors and for PC based data recording

Figure 2 –TBSRGC1 sensors connected to Remote Telemetry Unit or Data Recorder

8 Supported SDI-12 Commands

Command	Description	Response		
a!	Acknowledge Active	a <cr><lf></lf></cr>		
	U Cond Identification	013TEKBOXVN_TBSRGC1_V0.10_xxxxx <cr><lf></lf></cr>		
al!	Send Identification	With xxxxx representing the serial number		
aAb!	Change Address	b <cr><lf></lf></cr>		
0.0	Change Address	Changing the sensor address from a to b		
?!	Address Query	a <cr><lf></lf></cr>		
aM!	Start Measurement	attt1 <cr><lf></lf></cr>		
am.	Measures precipitation parameters	Delay (ttt = 001) in seconds and number of values (5)		
- 1401	Start Measurement and request CRC	attt1 <cr><lf></lf></cr>		
aMC!	Measures precipitation parameters and calculates CRC	Delay (ttt = 001) in seconds and number of values (5)		
aC!	Start Concurrent Measurement	attt1 <cr><lf></lf></cr>		
ao:	Measures precipitation parameters	Delay (ttt) in seconds and number of values (5)		
	Start Concurrent Measurement and			
aCC!	request CRC	attt1 <cr><lf></lf></cr>		
	Measures precipitation parameters and calculates CRC	Delay (ttt) in seconds and number of values (5)		
aM1!	Start Measurement	attt1 <cr><lf></lf></cr>		
	Measures temperature	Delay (ttt = 001) in seconds and number of values (5)		
aMC1!	Start Measurement and request CRC	attt1 <cr><lf></lf></cr>		
	Measures temperature and calculates CRC	Delay (ttt = 001) in seconds and number of values (5)		
aC1!	Start Concurrent Measurement	attt1 <cr><lf></lf></cr>		
	Measures temperature	Delay (ttt) in seconds and number of values (5)		
aCC1!	Start Concurrent Measurement and request CRC	attt1 <cr><lf></lf></cr>		
acci:	Measures temperature CRC	Delay (ttt) in seconds and number of values (5)		
		Upon issuing the aD0! Command, the TBSRGC1 will send		
	Get Measurement Result(s)	the measurement results.		
		Response on aM!,		
		+AA.AAA+BBB+CC.CCC+DD.DDD+EE.EEE		
aD0!		where: +AA.AAA = accumulated rainfall since last measurement (inches or mm of rain)		
		+BB = number of raw bucket tips since last measurement (counts)		
		+CC.CCC = total rainfall accumulation since reset. (inches/mm of rain)		
		+DD.DDD = total rainfall accumulation today (inches of rain)		
		+EE.EEE = total rainfall accumulation yesterday (inches of rain)		
aV!	Start Verification	a0000 <cr><lf> Not supported</lf></cr>		
aRn!	Continuous Measurement	a <cr><lf></lf></cr>		
aRn! aRCn!	Continuous Measurement + CRC	Not supported		
w • · · · ·	Continuous ividasultilitilit + CNC	1101 Supportou		

Table 1 – Standard SDI-12 commands supported by the TBSRGC1

9 Supported Extended Commands

Command	Command Description	
aXSD,YYYY,MM,DD!	set date where a represents the address, YYYY the year, MM the month and DD the day	aX_ok <cr><lf></lf></cr>
aXST,HH,MM,SS!	set time where a represents the address, HH the hour, MM the minute and SS the second	aX_ok <cr><lf></lf></cr>
aXGD!	query date	a,YYYY.MM,DD <cr><lf></lf></cr>
aXGT!	query time	a,HH,MM,SS <cr><lf></lf></cr>
aXCT,saa.aa!	Calibrate temperature where a represents the address, s the sign (+ or -), aa.aa the ambient temperature in °Celsius measured with a reference thermometer	aX_ok <cr><lf></lf></cr>
aXTUu!	Set temperature unit where a represents the address and u the temperature unit (C for °Celsius and F for °Fahrenheit)	aX_ok <cr><lf></lf></cr>
aXGU!	Query temperature unit	a,C or a,F <cr><lf></lf></cr>
aXSBV, sn.nn!	Set the volume of the Rain Gauge bucket where a represents the address and s the sign (+ or -) n.nn is the equivalent rainfall in mm or inch, per bucket tip	aX_ok <cr><lf></lf></cr>
aXGBV!	Query the volume of the Rain Gauge bucket	asn.nn <cr><lf></lf></cr>
aXSO,snnnn.nn!	Set start value/offset for the total accumulated rainfall where a represents the address and s the sign (+ or -) nnnn.nn is the start value/offset of the accumulated rainfall in mm or inch	aX_ok <cr><lf></lf></cr>
aXGO!	Query the start value/offset for the total accumulated rainfall	asnnnn.nn <cr><lf></lf></cr>
aXRS!	Reset total accumulated rainfall (to zero)	aX_ok <cr><lf></lf></cr>

Table 2 – Extended SDI-12 Commands

10 Technical Specifications

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Is	Supply current	Active mode (during measurement)		8		mA
Is	Supply current	Sleep mode, waiting for pulse interrupt		4		μΑ
Vs	Supply voltage	2 x AA alkaline cells		3		V
tm	Measurement Time	Time in active mode upon receiving a measurement command		1		S
TR	Temperature measurement range		-40		+85	°C

Table 3 – Technical Specifications

11 Connections

Figure 3 –connector assignment

CON 1: Production connector – do not connect

CON2: Main SDI-12 connector, screw terminal block

Pin1 – SDI-12 power (6...12V)

Pin2 - SDI-12 data

Pin3 - SDI-12 ground

Pin4 - Cable shield, decoupled to ground with 100K//100nF

CON3: Optional SDI-12 connector footprint

Pin1 - SDI-12 power (6...12V)

Pin2 - SDI-12 data

Pin3 - SDI-12 ground

Pin4 - Cable shield, decoupled to ground with 100K//100nF

J2: Raingauge connector; screw terminal block

Pin1 – Rain Gauge input; internally pulled up to 3V with 4.7K; ESD protected and debounced

Pin2 - Rain Gauge input; internally connected to GND

J1, J3: 2 x Combined SDI-12 / Rain Gauge connectors; 2.54mm header; optional use

Pin1 - NC

Pin2 - Ground

Pin3 - NC

Pin4 - SDI-12 data

Pin5 - Cable shield, decoupled to ground with 100K//100nF

Pin6 – SDI-12 power (6...12V)

Pin7 - Ground

Pin8 – Rain Gauge input; internally pulled up to 3V with 4.7K; ESD protected and debounced

12 Environmental Specifications

Symbol	Parameter	Conditions	Min	Max	Unit
TA	Operating Ambient Temperature Range		-40	+85	°C
T _{STG}	Storage Temperature Range		-40	+85	°C
	Moisture level	Non condensing	-	95	%

Table 4 - Environmental Specifications

13 Ordering Information

Part Number	Description	
TBSRGC1	TBSRGC1, SDI-12 Rain Gauge Interface *)	

^{*)} available with additional grommets or IP67 connectors upon order

Table 5 – Ordering Information

14 History

Version	Date	Author	Changes
V1.0	11.05.2017	Mayerhofer	Creation of the document

Table 6 – History